Characterization of Topological States on a Lattice with Chern Number

نویسندگان

  • A. S. Sørensen
  • M. D. Lukin
  • Mohammad Hafezi
  • Anders S. Sørensen
  • Mikhail D. Lukin
  • Eugene Demler
چکیده

We study Chern numbers to characterize the ground state of strongly interacting systems on a lattice. This method allows us to perform a numerical characterization of bosonic fractional quantum Hall (FQH) states on a lattice where conventional overlap calculation with known continuum case such as Laughlin state, breaks down. We calculate the Chern number by manipulating the twist angles of boundary conditions and counting vortices of a complex field related to the ground state manifold. The non-vanishing Chern number provides an unambiguous characterization for topological degenerate states which is an indication of FQH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONNECTING T AND LATTICE-VALUED CONVERGENCES

$top$-filters can be used to define $top$-convergence spaces in the lattice-valued context. Connections between $top$-convergence spaces and lattice-valued convergence spaces are given. Regularity of a $top$-convergence space has recently been defined and studied by Fang and Yue. An equivalent characterization is given in the present work in terms of convergence of closures of $top$-filters.  M...

متن کامل

Rydberg - Atom Quantum Simulation and Chern Number Charac - terization of a Topological Mott Insulator ALEXANDRE

Submitted for the MAR13 Meeting of The American Physical Society Rydberg-Atom Quantum Simulation and Chern Number Characterization of a Topological Mott Insulator ALEXANDRE DAUPHIN, Université libre de Bruxelles Universidad Complutense, MARKUS MUELLER, MIGUELANGELMARTIN-DELGADO, Universidad Complutense — In this talk we consider a system of spinless fermions with nearest and next-to-nearest nei...

متن کامل

Chern numbers hiding in time-of-flight images

We present a novel technique for detecting topological invariants – Chern numbers – from time-of-flight images of ultra-cold atoms. We show that the Chern numbers of integer quantum Hall states of lattice fermions leave their fingerprints as oscillations in the atoms’ momentum distribution. The number of oscillations within the lowest Brillouin zone is simply equal to the Chern number. The ubiq...

متن کامل

Combined topological and Landau order from strong correlations in Chern bands.

We present a class of states with both topological and conventional Landau order that arise out of strongly interacting spinless fermions in fractionally filled and topologically nontrivial bands with Chern number C=±1. These quantum states show the features of fractional Chern insulators, such as fractional Hall conductivity and interchange of ground-state levels upon insertion of a magnetic f...

متن کامل

Chern - Simons term and Topological Charge on the Lattice

In a somewhat overlooked work by Seiberg, a definition of the topological charge for SU(N) lattice fields was given. Here, it is shown that Seibergs and Lüschers charge definition are related up to the section of the bundle. With the continued interest in baryon number violating processes, Seibergs paper is useful since it allows for a Chern-Simons number also.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007